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Motivation

• Complex terrain poses considerable challenges for our
ability to measure and predict exchanges of carbon dioxide
between the ecosystem and atmosphere

• U.S. Mountain West is undergoing measurable climatic
shifts impacting drought, fire, insect outbreaks and the
ability of the region to serve as a sink of atmospheric CO2

• Approaches for quantifying the carbon exchange differ in
seasonal magnitudes and timing of peak uptake over
various scales.
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Motivation

Bark beetle infestation of lodgepole pine (August 2010, Keystone, Colorado)
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Motivation

The global carbon cycle for the 1990s, showing principal fluxes in GtC yr−1

(taken from IPCC AR4)
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Measuring exchanges of carbon

• Direct measurement of net
ecosystem exchange (NEE)
using the eddy covariance
technique is preferred over
flat landscapes with relatively
homogeneous landcover (e.g.
grasslands, wetlands, tree
canopies)

• NEE responds strongly to
changes in temperature and
water availability, making it a
useful indicator of carbon
uptake

Wisconsin’s tall tower at Park Falls
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Measuring exchanges of carbon

• A derivative of NEE, net ecosystem production (NEP),
showing net carbon gained within the tower’s footprint
over 1 year

AmeriFlux Niwot Ridge (Colorado) tower
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Issues with eddy covariance over complex terrain

1 Typically land cover is quite variable

2 Frequent terrain and thermally driven
(upslope/downslope) flows

3 Models are not good at simulating carbon exchange over
terrain
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Alternatives: Airborne Boundary Layer Budget

Airborne Campaign in
the Mountains
Experiment ’07
(ACME-07)

• Apprx. footprint:
north cen. Colorado

• Cost & Not
real-time
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Alternatives: Process based (bottom-up) Modeling

• Bottom-up models such as NCAR’s Community Land
Model (CLM) and NOAA’s LM3V use remotely sensed
products (fPAR, LAI) to drive reaction rates and
exchanges.

• Remotely sensed observations can be problematic,
particularly in terrain that is subject to frequent
disturbance
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Alternatives: Inversion Modeling to Retrieve Fluxes

Advantages of this approach for modeling over complex terrain

1 Extensive CO2 concentration monitoring network. Isolated
surface stations from the 1950’s evolved into sophisticated
satellite and in situ observing systems

2 Infrastructure.
Mountaintop
monitoring of
CO2 has
provided both
motivation and
infrastructural
engineering
required to study
land–atmosphere
carbon exchange
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Alternatives: Inversion Modeling to Retrieve Fluxes

• Over complex terrain flux
retrieval is preferred but
results can be confounded
by unresolvable flows that
skew CO2 measurements

• Our ability to obtain
accurate CO2 fluxes is
limited by a large gap in
the monitoring network
over Western US

GLOBALVIEW towers
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Regional Atmospheric Continuous CO2 Network
(RACCOON) Domain & Seasonal Cycle

• RACCOON covers a
missing portion of the CO2

monitoring network in the
Mountain West

• Note the difference in
seasonal cycles between
Mauna Loa (MLO) and
RACCOON towers
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Example poorly mixed air (left) from Vertical CO2

Profile over RACCOON (ACME ‘07 Campaign)

CO2 concentration: horizontal axis
Altitude: vertical axis
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AIRCOA Design & Network Coverage

• Six RACCOON
towers are outfitted
with autonomous,
inexpensive, robust
CO2 analyzer
(AIRCOA) platforms

• Observed CO2 mole
fractions are
sampled across
multiple inlet
heights (3-40 m)

Location and characteristics of the RACCOON
towers.

Tower lat., lon. Setting

EFS 38.80 N, 109.21 W marginal plateau
FEF 39.91 N, 105.88 W alpine valley
RBA 36.46 N, 109.10 W mountaintop
SPL 40.45 N, 106.73 W mountaintop
HDP 40.56 N, 111.65 W mountaintop
NWR 40.05 N, 105.58 W mountaintop

Elevation tower Year
(msl) ht. (m) Installed

EFS 1280 39 2007
FEF 2745 18 2005
RBA 2982 22 2007
SPL 3210 9 2005
HDP 3351 18 2006
NWR 3523 5 2005
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Example of Scatter
in Tower Data from Niwot Ridge

1 Need for rejecting data representative of
upslope/downslope flows, nocturnal spikes, and
exaggerated afternoon dips caused by local vegetation

2 Reducing “sampling error” improves flux retrieval
representativeness

 0

 90

 180

 270

 360

00 06 12 18 00 06 12 18 00 06 12 18
 0

 2

 4

 6

 8

 10

 12

 14

W
in

d
 D

ir
e
c
ti
o
n
 (

d
e
g
re

e
s
)

W
in

d
 S

p
e
e
d
 (

m
 s

-1
)

Hour of Day

Wind Direction
Wind Speed

 376

 378

 380

 382

 384

 386

 388

00 06 12 18 00 06 12 18 00 06 12 18

C
O

2
 (

P
P

M
)

Hour of Day

all obs.

Brooks, Desai, Stephens, Assessing CO2 Filters Iowa St. Univ. Geological-Atmospheric Sci. Dept. 2010



Iowa St.
Univ.

Geological-
Atmospheric
Sci. Dept.

2010

Brooks,
Desai,

Stephens,
Assessing

CO2 Filters

Motivation

Background

Methods

Results

Future Work

Motivating Questions

• Can spatial coherence and simple evaluation of CO2 time
series be used to identify local or regional air mass?

• How do statistical CO2 filters compare with respect to
variances, growth rates, and ‘flagged data’?

• What do these filters suggest about the use of
mountaintop CO2 observations in inverse models to
estimate regional fluxes?
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Discrete Time CO2 Data Filters

• Detection error (DE) filters have effective uses as ‘first
pass’ filters of atmospheric CO2 data. Used by Gillette and
Steele (1983) as a basic filter of flask sample data from
Niwot Ridge, and Keeling and others (1976) for South
Pole data. Filtered subsets are formed:

{Xi,h ∈ x(t) : σXi,h
< 1 and |Xi,h−Xi,h−1| < 0.5} (1)

• Statistical interpolation (SI) filters are useful for
sophisticated signal processing, including NOAA’s MLO
tower (Thoning and others 1989). Data points from
complete set Xj are used to fit a spline S(Xi) curve.
Outliers then rejected during iterative passes. Formation
of final subset x(n):

{Xj ∈ x(n) : |S(Xi)−Xj | < 0.5} (2)
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Discrete Time CO2 Data Filters

• Weighted median (WM) filter is designed to adjust for
synoptic variability via a dynamically calculated limit l,
that is used to form the subset:

{Xi ∈ x(n) : |X̃(n)−Xi| < l} (3)

• Spatial coherence is designed to identify periods when
observations from proximal towers (Xi,Xj) are sampling
the same air mass:

{Xi ∈ x(t) : |Xi −Xj | < 1} (4)
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Spatial Coherence

{Xi ∈ x(t) :

|Xi −Xj | < 1}
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Basic Statistics

Table: Basic statistics for the complete set of observations (CS), and
filtered subsets (DE, WM, SI) across years 2005-2010. Normalized
sum of squares (SSN ) represents average space-time variability.

Retained Grand
Fraction Mean SSN

CS 1.000 388.5 50.2
DE 0.777 387.1 17.1
WM 0.423 387.5 9.2
SI 0.343 387.5 8.2
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Mean Annual Growth Rates

Figure: Mean annual CO2 growth rates by year. Note that growth
rates along the vertical axis greater than 2 PPM/year lie below the
1:1 line.
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Synoptic Case Studies: DE & Coherence
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Synoptic Case Studies: SI & WM
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Relationship between vertical CO2 gradient and
standard deviation

Relationship
between vertical
CO2 gradient and
standard deviation.
The ∆CO2/∆z
vertical gradient is
plotted for each
half-open range of
standard deviations
([−4,−3), [−3,−2), . . . )
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Summary

• When used on nearby towers spatial coherence filters
spurious observations reasonably well, although output can
be sporadic. However, coherence does not distinguish
between well-mixed and poorly-mixed CO2 samples.

• The DE filter is the least stringent, permits the most
spurious observations, largely because it can only
account for detection and sampling error across the
height of the tower.

• SI & WM filters reject more than half of the complete set
of observations.

• The SI and WM filters remove the most spurious
(non-synoptic) observations.
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Future Work:
Experimental Design for Estimating Regional Fluxes

• CarbonTracker (CT) is an inverse tracer transport model
that optimizes flux estimates using observed CO2 mole
fractions (www.esrl.noaa.gov/gmd/ccgg/carbontracker/)

• CT branched-run simulations assimilating various
collections of RACCOON observations:

• Control. Standard CT simulation assimilating data from 2
RACCOON towers

• A. Complete set from 4 RACCOON towers assimilated
• B-D. Filtered subsets from 4 RACCOON towers

1 Nocturnal observations only
2 Nocturnal and daytime observations
3 Tower elevation adjusted to match model

orography (nocturnal and daytime)

Brooks, Desai, Stephens, Assessing CO2 Filters Iowa St. Univ. Geological-Atmospheric Sci. Dept. 2010
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Future Work:
Multi-model Regional Calibration Study

• In line with AmeriFlux and NACP objectives, carry out a
diagnostic evaluation of carbon budgets over US Mountain
West from forward and inverse models

• How much do forward and inverse models differ with
respect to time averaged carbon budgets and seasonal
cycles over the US Mountain West?

• Does the mismatch between carbon exchange estimates
exceed model error estimates?

• ‘Apples-apples’ comparison of process based models using
the same transport model

Brooks, Desai, Stephens, Assessing CO2 Filters Iowa St. Univ. Geological-Atmospheric Sci. Dept. 2010
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