Sub-daily Statistical Downscaling of Meteorological Variables Using Neural Networks

Jitendra Kumar¹, Bjørn-Gustaf J. Brooks², Peter E. Thornton³ and Michael C. Dietze²

¹Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA, ²Department of Plant Biology, University of Illinois, Urbana-Champaign, IL, USA, ³Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA

Wednesday June 6, 2012

Rationale for scaling climate data with neural networks

- Model validation (Jung et al. 2011, Biogeosciences)
- Extrapolation/interpolation of climate model projections (Coulibaly et al., 2005, J. Hydromet.)
- Synthesizing driver data consistent with observed weather (PalEON)

Example sparse network and rep. clim. zones

fig. taken from http://fluxnet.ornl.gov

Key points of past neural network downscaling performance

- Wilby et al. 1998, Water Resour. Rsrch., ANN's synthesize temp. and precip. poorly due to wet day occurrence
- Haylock et al. 2006, Intl. Jnl. Clim., ANN synthesize precip well, especially at interannual variability, but consistently underestimate precip. intensity. Mixture model approach greatly improved performance.
- For difficult met. variables (precip.) combining ANN's and sparse regularization models (e.g., Ebtehaj et al. 2012, JGR Atm.) may be needed to capture full space and time variance.

6-hourly total precipitation snapshot (March, 2000) over eastern U.S. Taken from CRU-NCEP reanalysis

Downscaling framework

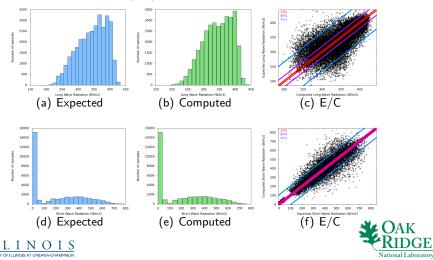
To downscale multiple meteorological variables that are coherent between var's we developed an easy-to-use, fast, and open-source (C-code) downscaling framework based on artificial neural networks (ANNs) called the Climate Observations and Model Data Analysis and Synthesis Toolkit (COMDAST), which includes an optional mixture model approach for handling precipitation.

Variable	Short Name	Model type
Downwelling longwave radiation	lwdown	ANN only
Total precip. (stratif.+conv.)	precipf	mixture model
Surface pressure	psurf	ANN only
Specific humidity	qair	ANN only
Downwelling shortwave radiation	swdown	ANN only
2 meter air temperature	tair	ANN only
wind speed	wind	ANN only 🔬

http://www.climatemodeling.org/comdast/ (GNU GPL License)

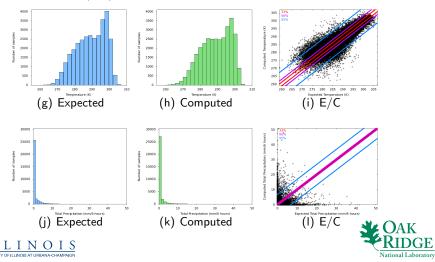
Representativeness test: variance & model data mismatch

Histograms and scatter plots with Cl's of 0.5° longwave (top) and shortwave radiation (bot). Target vs. coarsened-then-dwnsc. data



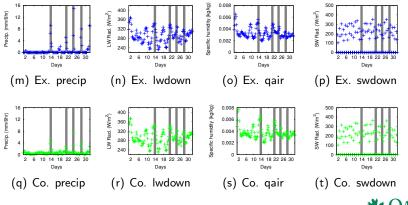
Representativeness test: variance & model data mismatch

Histograms and scatter plots with Cl's of 0.5° 2m air temp. (top) and tot. precip. (bot). Target vs. coarsened-then-dwnsc. data



Consistency across meteorological variables

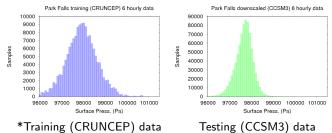
Case study comparison of consistency between meteorological variables for several precipitation events (Jan, 2000).

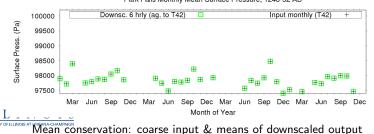


National Laboratory

Consistency between 'testing' input & downscaled output

Histg. showing diff. in mean, var. & time series showing mean consrvn.

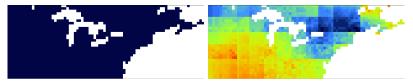




Park Falls Monthly Mean Surface Pressure, 1248-52 AD

Spatial coherence in downscaled data

Maps representing four 6-hour snapshots (April, 1250 C.E.) from downscaled CCSM3 insolation (monthly, $\sim 3^{\circ}$ to 6-hourly, 0.5°)

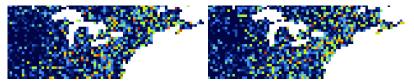


6-12 LT

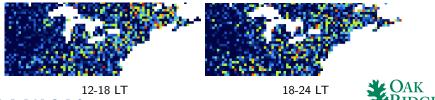
National Laboratory

Spatial coherence in downscaled precipitation data

Maps representing four 6-hour snapshots (April, 1250 C.E.) from downscaled CCSM3 precipitation (monthly, $\sim3^\circ$ to 6-hourly, 0.5°). Note the loss of spatial contiguousness. Spatial coherence is reduced by our mixture model approach.



6-12 LT



Summary

- Our neural network temporal downscaling approach allows for downscaling of many variables across hundreds of years of monthly means to 6 hourly values in minutes per location.
- Validation tests indicate accuracy of monthly means to within 1% across all variables. Expected and computed standard deviations were similar to within 1% for longwave, shortwave radiation, specific humidity, and air temperature, and were 4%, 10% and 11% for surface pressure, wind, and precipitation.
- A trained network that is applied to downscale a new 'testing' dataset can require use of the optional mixture model approach if the testing data are significantly different from training data

National Laboratory

'Parting words' & acknowledgments

- This presentation: www.climatemodeling.org/~bjorn/talks/
- www.climatemodeling.org/comdast/
- www.paleonproject.org
- For data contributions we thank Yafang Zhong for providing the CCSM-3 model output
- We thank Nicolas Viovy for generating CRU-NCEP- Natnl Center for Environmental Prediction (NCEP)- Climate Research Unit, Univ. of East Anglia who produced the base datasets for CRU+NCEP.
- Thanks to Forrest Hoffman and Shawn Serbin for help with development and analysis
- This work was funded in part by the National Science Foundation, grant #1065848, and Oak Ridge National Laboratory, managed by UT-Battelle, LLC for the U.S. DOE under contract
 IDE-AC05-000R22725.