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Introduction Results Consistent Climate Summary

Rationale for scaling climate data with neural networks

Model validation (Jung et al. 2011,
Biogeosciences)

Extrapolation/interpolation of
climate model projections
(Coulibaly et al., 2005, J.
Hydromet.)

Synthesizing driver data consistent
with observed weather (PalEON)

Example sparse network and rep. clim. zones

fig. taken from http://fluxnet.ornl.gov

http://dx.doi.org/10.5194/bgd-6-5271-2009
http://dx.doi.org/10.5194/bgd-6-5271-2009
http://dx.doi.org/10.1175/JHM409.1
http://dx.doi.org/10.1175/JHM409.1
http://www.paleonproject.org/
http://fluxnet.ornl.gov/maps-graphics
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Key points of past neural network downscaling performance

Wilby et al. 1998, Water Resour. Rsrch., ANN’s synthesize
temp. and precip. poorly due to wet day occurrence

Haylock et al. 2006, Intl. Jnl. Clim., ANN synthesize precip
well, especially at interannual variability, but consistently
underestimate precip. intensity. Mixture model approach
greatly improved performance.

For difficult met. variables (precip.) combining ANN’s and
sparse regularization models (e.g., Ebtehaj et al. 2012, JGR
Atm.) may be needed to capture full space and time variance.

6-hourly total precipitation snapshot (March, 2000) over eastern U.S. Taken from CRU-NCEP reanalysis

http://dx.doi.org/10.1029/98WR02577
http://dx.doi.org/10.1002/joc.1318
http://dx.doi.org/10.1029/2011JD017057
http://dx.doi.org/10.1029/2011JD017057
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Downscaling framework

To downscale multiple meteorological variables that are coherent between
var’s we developed an easy-to-use, fast, and open-source (C-code)
downscaling framework based on artificial neural networks (ANNs) called
the Climate Observations and Model Data Analysis and Synthesis Toolkit
(COMDAST), which includes an optional mixture model approach for
handling precipitation.
http://www.climatemodeling.org/comdast/ (GNU GPL License)

Variable Short Name Model type
Downwelling longwave radiation lwdown ANN only
Total precip. (stratif.+conv.) precipf mixture model
Surface pressure psurf ANN only
Specific humidity qair ANN only
Downwelling shortwave radiation swdown ANN only
2 meter air temperature tair ANN only
wind speed wind ANN only

http://www.climatemodeling.org/comdast
http://www.climatemodeling.org/comdast/
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Representativeness test: variance & model data mismatch

Histograms and scatter plots with CI’s of 0.5◦ longwave (top)
and shortwave radiation (bot). Target vs. coarsened-then-dwnsc. data

(a) Expected (b) Computed (c) E/C

(d) Expected (e) Computed (f) E/C
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Representativeness test: variance & model data mismatch

Histograms and scatter plots with CI’s of 0.5◦ 2m air temp. (top)
and tot. precip. (bot). Target vs. coarsened-then-dwnsc. data

(g) Expected (h) Computed (i) E/C

(j) Expected (k) Computed (l) E/C
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Consistency across meteorological variables

Case study comparison of consistency between meteorological
variables for several precipitation events (Jan, 2000).
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Consistency between ‘testing’ input & downscaled output

Histg. showing diff. in mean, var. & time series showing mean consrvn.

*Training (CRUNCEP) data Testing (CCSM3) data

Mean conservation: coarse input & means of downscaled output
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Spatial coherence in downscaled data

Maps representing four 6-hour snapshots (April, 1250 C.E.) from
downscaled CCSM3 insolation (monthly, ∼ 3◦ to 6-hourly, 0.5◦)

0-6 LT 6-12 LT

12-18 LT 18-24 LT
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Spatial coherence in downscaled precipitation data

Maps representing four 6-hour snapshots (April, 1250 C.E.) from
downscaled CCSM3 precipitation (monthly, ∼ 3◦ to 6-hourly, 0.5◦).
Note the loss of spatial contiguousness. Spatial coherence is
reduced by our mixture model approach.

0-6 LT 6-12 LT

12-18 LT 18-24 LT
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Summary

Our neural network temporal downscaling approach allows for
downscaling of many variables across hundreds of years of
monthly means to 6 hourly values in minutes per location.

Validation tests indicate accuracy of monthly means to within
1% across all variables. Expected and computed standard
deviations were similar to within 1% for longwave, shortwave
radiation, specific humidity, and air temperature, and were
4%, 10% and 11% for surface pressure, wind, and
precipitation.

A trained network that is applied to downscale a new ‘testing’
dataset can require use of the optional mixture model
approach if the testing data are significantly different from
training data
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