Modeling LGM Brooks NTRO

MODELING

BACKGRNE

ICE BACKGRN EXPERMN

RESULTS

OPEN QUESTIONS

OUTRO

Hindcasting the Last Glacial Maximum: Model Capabilities and Limitations in Ice Sheet-Climate Feedbacks

Bjorn Brooks

University of Illinois, Urbana-Champaign Department of Atmospheric Sciences

Jan. 18, 2013, Dept. of Earth and Planetary Sciences, Northwestern University

イロト イポト イヨト イヨト

Pressing Questions

Modeling LGM

INTRO

- MODELING
- MODEL BACKGRND
- ICE BACKGRN
- EXPERMNTS
- RESULTS
- OPEN QUESTIONS
- OUTRO

- What do global scale climate simulations tell us about the fate of ice sheets?
- Are models parameterized realistically, and if not can we suggest ways to improve?

<ロ> (四) (四) (三) (三)

æ

Given all their complexity why bother with models?

LGM Brooks NTRO

Modeling

MODELING

MODEL BACKGRNE

ICE BACKGRND EXPERMNT RESULTS

OPEN QUESTION

OUTRO

Improvement

Credit: Simmons and Hollingsworth, 2002, Q.J.R. Meteorol. Soc.

・ロト ・ ア・ ・ ヨト ・ ヨト

æ

Given all their complexity why bother with models?

ICE BACKGRND EXPERMNT

OPEN QUESTIONS

OUTRO

Unanticipated climate impacts

<ロ> (日) (日) (日) (日) (日)

Dietze Ecological Forecasting Lab Ecologists, Geologists, Remote Sensing

- Modeling LGM Brooks
- INTRO
- MODELING
- MODEL BACKGRNE
- ICE BACKGRNI EXPERMN
- RESULTS
- OUTRO

Dan Wang, Shawn Serbin, David LeBauer

Modeling LGM

() < </p>

Modeling Activities: Ecological Forecasting

Modeling Activities: Contemporary Period

Modeling LGM

Brooks

INTRO

MODELING

MODEL BACKGRND

ICE BACKGRNI EXPERMN • Eddy covariance, contemporary carbon balance

- Early, mid, late successional forests
- Instantaneous responses to climate

Jonathan Thom at Willow Creek, WI

Modeling Activities: Past

Modeling LGM

Brooks

INTRO

MODELING

MODEL BACKGRND

ICE BACKGRN EXPERMN

RESULTS

OPEN QUESTION

OUTRO

• Dendrochronology, past carbon balance

Brooks

・ロト ・ ア・ ・ ヨト ・ ヨト

Modeling Activities: Across Space

Modeling LGM Brooks

INTRO

MODELING

MODEL BACKGRND

ICE BACKGRNI EXPERMN

RESULTS

OPEN QUESTION

OUTRO

 Representativeness analysis, inversion modeling, site-tower-airplane-satellite

Confronting Models with Data Last Millennium

Land Surface Models Capabilities

Modeling LGM

- Brooks
- INTRO
- MODELING

MODEL BACKGRND

- RESULTS
- OPEN QUESTIONS
- OUTRO

- Fundamental Earth system processes (biogeophysical: bioenergetics,biogeochemical: photosynthesis, bioenergetics dispersal, mortality
 - biogeophysical: hydrology, orography, radiative responses
 - biogeochemical: photosynthesis, bioenergetics
 - Organismal dispersal, mortality, disturbance, LULC
- Many models and many implementations
- Base models

イロト イポト イヨト イヨト

Land Surface Models Capabilities and Limitations

Global Ice System

Modeling LGM Brooks

- INTRO
- MODELING
- MODEL BACKGRND
- ICE BACKGRND
- EXPERMNTS
- RESULTS
- OPEN QUESTIONS
- OUTRO

- Global surface area that is glaciated: one-tenth (one-third during LGM)
- Percent of freshwater total from glaciers: seven-tenths
- Glaciers as climate barometers
- Glacierization potential as a function of effective precipitation, altitude, latitude, energy, topography
- Climate effects, melt season, ablation energy, MAT, *ablation and PDD*

イロト イポト イヨト イヨト

3

Drivers of Global Climate Change

LGM ICE BACKGRND

Modeling

OUTRO

- How influential have ice sheets been in the past?
- Ice sheets as barometers

Credit: Hansen et al. (2007) PTRSoc.A.

Contemporary Distribution of Ice Sheets

Modeling LGM

Brooks

INTRO

MODELING

MODEL BACKGRNE

ICE BACKGRND

EXPERMNTS

RESULTS

OPEN QUESTION

OUTRO

• one-tenth of Earth's surface

Data from ICE-5G, see Peltier, 2004, Ann.Rev.E.PI.Sci.

Ice Sheet Thickness at 00.0Ka

Past Distribution of Ice Sheets

Modeling LGM

Brooks

INTRO

MODELING

MODEL BACKGRND

ICE BACKGRND

- EXPERMNTS
- RESULTS
- OPEN QUESTION
- OUTRO

- > one-quarter of Earth's surface
- How to get from A to B and do global scale models parameterize glacierization/degradation thresholds?

Data from ICE-5G, see Peltier, 2004, Ann.Rev.E.PI.Sci.

Ice Sheet Thickness at 21.0Ka

Modeling LGM

Brooks

Last Glacial Maximum as a Case Study

Modeling LGM Brooks

INTRO

MODELING

MODEL BACKGRND

ICE BACKGRND

EXPERMNTS

RESULTS

OPEN QUESTIONS

OUTRO

- Why?
- Temp. bias among models
- Equilibrium climate state, peak ice sheet extent, lower solar radiation inputs

Differences in Modeled Climate During Last Glacial Maximum

Ice Sheet Gains and Losses

Modeling LGM Brooks

- INTRO
- MODELING
- MODEL BACKGRND
- ICE BACKGRND
- EXPERMNTS
- RESULTS
- OPEN QUESTIONS
- OUTRO

- Mass balance, snow, ice, water, vapor, ELA
- Accumulation, snowfall, effective precipitation
- Ablation, melting, debris, wind removal, calving
- Ablation energy: $Q_m = Q_s + Q_l + Q_h + Q_e$
 - Radiative fluxes: short- and longwave radiation
 - Turbulent fluxes: sensible and latent heat
- Many global climate models use PDD warming to melt snow and ice

イロト イポト イヨト イヨト

Earth System Models of Climate PMIP-3 Models

PMIP-3 http://pmip3.lsce.ipsl.fr

Vodeling		List of PMIP3/CMIP5 Information as of May	participants 4th 2012		Up to date info:	https://pmip3.l	sce.ipsl.fr/wiki	/doku.php/pmip	3 da	tabas	e stat	us							
LGM		Institute	Country	0k piControl	6k midHolocene	21k Igm	LM past1000 (1000 years)	1 % CO ₂ fpctCO2 (140 years)	CMIPS	PloMP	Last Interglacial	Holocene	Carbon cycle	Atm	Oon	Model id	Term of Use	Data Node	Publish to
	1	AWI	Gernary	Completed	Completed	Completed			No	Yes	Yes	No	Yes	95×48 × L19	120×101 × L40	COSMOS-aso 7		DKRZ ?	ESG-WDCC ?
	2	BCC	China	CMIP5 (500)	CMIP5 (100)		CMIPS	CMIPS			No	No	Yes	128×64 × L26	360×232 × L40	boo-osm1-1	Unrestricted	BCC	ESG-POMDI
ΓRO	3	BCCR	Norway	Running Summer 2012	Running Summer 2012	Running Summer 2012	Running Summer 2012	Start April 2012 May 2012	No	Yes	Yes	No	Yes	95×48 × L25	100×116 × L32	NorESM1-L	Unrestricted	DKRZ ?	ESG-WDCC ?
	4	CAU-GEOMAR	Germany	Completed	Completed			Running	No	Yes	Yes		No	90x48 x L19	182×149 × L31	KCM1-2-2	Non-commercial only	DKRZ ?	ESG-WDCC ?
	6	CNRM-CERFACS	France	CMIP5 (850)	CMIP5 (200)	Running April 2012		CMIPS			No	No	No	250x128 x L31	362×292 × L42	CNRM-CM5	Non-commercial only	CNRM	ESG-PCMDI
	0	FUB	Germany	PMIP3 (400)		PMIP3 (600)			No		No	No	Yes	90×48 × L19	120×101 × L40	COSMOS-ASO	Unrestricted	IPSL (DKRZ later?)	ESG-BADC
)DEL	7	NOAA-GFDL	USA	CMIP5 (470)		Start Spring 2012		CMIPS			No	No	Yes/No	144×90 × L24	360×200 × L50	GFDL-CM3	Unrestricted	GFDL	ESG-PCMDI
CKGRND	8	NASA-GISS	USA	CMIP5 (1163)	Completed	Completed	CMIP5			Yes		Yes	No	144×90 × L40	288×180 × L32	GISS-E2-R	Unrestricted	NCCS	ESG-PCMDI
		IPSL	France	CMIP5 (1000)	CMIP5 (500)	CMIP5 (200)	Running April 2012	CMIPS		Yes			Yes	98×95 × L39	182x149 x L31	PSL-CM5A-LR	Unrestricted	IPSL	ESG-BADC
	10	KNMI or ICHEC 7	Netherlands	Completed	Completed			2	2	Yes	No	No	No	320×160 × L62	362×292 × L42	EC-Earth-2-2	Unrestricted	BADC or IPSL 7	ESG-BADC
CKGRND	11a			CMIP5 (900)	Completed	Completed		CMIPS						128×60 × L26		FGOALS-g2	Unrestricted	LASO	ESG-PCMDI
	116	LASG-IAP LASG-CESS	China	CMIP5 (501)	Completed 7	Started ? End 7				Yes			No	× L26	360×160 × L30	FGOALS-s2	Unrestricted	LASO	ESG-PCMDI
PERMNTS	116			Completed			Completed							72x45 x L28		FGOALS-gl	Unrestricted	LASG	ESG-POMDI
	12	LOVECLIM	Belgium France Netherlands	Completed	Completed	Completed	Completed		No		Yes	Yes	No	32x64 x L3	122x65 x L20	LOVECLM1-2	Unrestricted	IPSL	ESO-BADC
	13	MIROC	Japan	CMIP5 (531)	CMIP5 (100)	CMIP5 (100)	CMIP5	CMIPS		Yes			Yes	128×64 × L60	256×192 × L44	MIROC-ESM	Non-commercial only	DIAS	ESG-PCMDI
	14	MPI-M	Germany	CMIP5 (1158)	CMIP5 (100)	CMIP5 (100)	CMIP6	CMIPS					No	198×98 × L47	250×220 × L40	MPI-ESM-P	Unrestricted	DKRZ	ESG-WDCC
ESTIONS	15	MRI	Japan	CMIP5 (500)	CMIP5 (100)	Running April 2012	Not started July 2012?	CMIP5		Yes	No	No	No	320×160 × L48	364×368 × L51	MRI-COCM3	Non-commercial only	DIAS	ESG-PCMDI
	16	NCAR	USA	CMIP5 (501)	CMIP5 (201)	CMIP6 (101)	CMIP5	CMIPS		Yes			No	288×192 × L28	320×384 × L60	CCSM4	Unrestricted	NCAR	ESG-NCAR
TRO	17	OSUVie	USA	Completed	Running May 2012	Running May 2012		Not started April 2012	No		No	No	No	128×64 × L10	100 × 100 × L19	OSUVie-0-3	Unrestricted	?	2
	18	CSIRO-QCCCE	Australia	CMIP5 (500)	CMIP5			CMIPS					No	192×98 × L18	192×192 × L31	CSIRO-Mk3-8-0	Non-commercial only	NCI	ESG-NCI
	19	UK Groups (UBRISILEEDS/EDINB URGH - Hadley)	UK	CMIP5 (497)	CMIP5 (-ES: 102 -CC: 35)	Not started Spring 2012	Running Summer 2012	CMIPS		Yes	Yes	Yes	Yes	192×145 × L38	360x216 x L40	HadGEM2-ES HadGEM2-CC	Unrestricted	BADC	ESO-BADC
	20	UNSW	Australia	PMIP3 (1000)	PMIP3 (500)	Running June 2012	PMIPS	PMIPS	No	Yes	Yes	Yes	No	64x56 x L18	128×112 × L21	CSIRO-Mk3L-1-3	Non-commercial only	IPSL (NCI later?)	ESG-BADC
	21	Uoff	Canada	Running June 2012		Running June 2012			No		No	No	No	256×128 × L28	320×388 × L40	Ueff-CCSM3	Unrestricted	7	7

EX

PMIP3 + PlioMIP groups: Note that the models used for PlioMIP are often

not (exactly) the same as the ones used for PMIP3/CMIP5

· 미· · · 메· · · 르· · · ㄹ· · · ㄹ

PlioMIP-only (not in the table): LPAP, UoM

Earth System Models of Climate CMIP5 Models that Generated Output

Modeling LGM Brooks NTRO MODELING

NA - -I - I

ICE BACKGRNE

EXPERMNTS

RESULTS

OPEN QUESTION

OUTRO

CMIP5 multi-model e	ensemble ((Taylor et	al.	2012,	BAMS)

C - -

æ

	wodei	Group	Sheet	Atmosphere	Land	Ocean	lce
	CCSM4	USA	prescr.	CAM4.0 (Neale et al. 2010,NCAR)	CLM3.5 (Olesen et al. 2008, JGR)	POP2 (Smith et al. 2010,NCAR)	CICE (Hunke et al. 2010,LANL)
ID NTS	CNRM-CM5	France	prescr.	ARPEGE (CNRM)	SURFEX (CNRM)	NEMO (CNRM)	GELATO (Salas-Mélia, 2002,OcnMod)
	MIROC (Watanabe et al.,2011, Geos.Mod.D.)	Japan	prescr.	AGCM	MATSIRO	сосо	COCO

<ロ> (四) (四) (三) (三)

Last Glacial Maximum Experimental Design

- Modeling LGM Brooks
- INTRO
- MODELING
- MODEL BACKGRND
- ICE BACKGRNE
- EXPERMNTS
- RESULTS
- OPEN QUESTIONS
- OUTRO

- Orbital Parameters, eccentricity, obliquity, perihelion
- Solar constant
- Atm. Trace gasses (CO₂, CH₄, N₂O, O₃, CFC)
- Atm. Aerosols, Atm. pressure
- Vegetation
- Ocean bathymetry, salinity
- Wathershed basin flow
- Ice sheet extent, topography
- Ice sheet mass balance

・ロト ・同ト ・ヨト ・ヨト

Annual Fluxes and Melt Rates (look at the priority among models)

Brooks

Annual Fluxes and Melt Rates

Modeling LGM Brooks NTRO MODELING

MODEL BACKGRND

ICE BACKGRNI

EXPERMNTS

RESULTS

OPEN QUESTIONS

OUTRO

Priority of models for component Q-fluxes DHFLS DHFSS RLDS RSDS

MIROC MIROC CNRM MIROC CCSM4 CCSM4 CCSM4 CCSM4 CNRM CNRM MIROC CNRM

DHFLS: downward latent heat flux DHFSS: downward sensible heat flux RLDS: downwelling longwave radiation RSDS: downwelling shortwave radiation

イロト イポト イヨト イヨト

æ

Snow Melt Surprise

Modeling LGM Brooks

- INTRO
- MODELING
- MODEL
- EXPERMNT
- RESULTS
- OPEN QUESTIONS

• Model with the most energy available to melt snow has the *least* snow melt. Why?

Reasons for Snow Melt Surprise

-
- MODEL
- BACKGRND
- ICE BACKGRNI
- EXPERMNTS
- RESULTS
- OPEN QUESTIONS

- Temperature drives snowmelt
- Spatial, climatic differences

(ロ) (部) (E) (E)

з

Issues with Snow Melt-Energy Flux Disconnect

Modeling LGM Brooks

- INTRO
- MODELING

MODEL BACKGRNE

ICE BACKGRN

EXPERMNTS

RESULTS

OPEN QUESTIONS OUTRO

- Seasonal changes in atmospheric temperature give rise to differing dT/dz profiles, which in turn affect turbulent heat fluxes
- Seasonal changes in BL height and TKE

Conceptual temperatures through ice in different seasons (winter, summer, no gradient)

Digging Deeper into Model Mechanisms

Modeling LGM

RESULTS

How do models compare in terms of downward sensible heat flux and temperature

Seasonal changes in turbulent flux and BL height

Brooks

CCSM4

R² = 83.76%, metrics are normalized to sum 100%.

Brooks

Modeling LGM

CNRM-CM5

R² = 81.33%, metrics are normalized to sum 100%.

MIROC-ESM

Snow Melt Seasonality Model vs. Present Day Remote Sensing

Modeling

RESULTS

- MIROC & **CNRM 1-2** months out of phase
- Both have shoulder season melt issues

Brooks

Modeling LGM

Open Questions Take Home Message

Open Questions Next Steps

Modeling LGM

- Brooks
- INTRO
- MODELING
- MODEL BACKGRND
- EXPERMNTS
- RESULTS
- OPEN QUESTIONS
- OUTRO

- What do global scale climate simulations tell us about the fate of ice sheets?
 - .. how rest of the Earth system responds when glaciers held constant (hydrologic cycle, storminess, carbon balance)
 - ... but not directly about glacierization tipping points, or longer term feedbacks
- Feedbacks from turbulent fluxes and LHF within ice not well represented
- Are models parameterized realistically, and if not can we suggest ways to improve?
 - Radiative and turbulent fluxes that are internally consistent will allow for realistic melt rates and acceleration through changes in TKE
 - Response fxns, multi-layer snowpack/ice gradients will help
- EB snow melt methods dominated by insolation perturb snow melt seasonality (SWdown 40-80% in most cases)

Acknowledgments

Modeling LGM Brooks

INTRO

MODELING

MODEL BACKGRND

ICE BACKGRN

EXPERMNTS

RESULTS

OPEN QUESTIONS

OUTRO

- Michael Dietze (Boston U.), Shawn Serbin (UW-Madison), Jason Thomason (ISGS)
- CMIP-5 and PMIP-3 contributors, Earth System Grid participants, Lawrence Livermore Natnl. Lab.
- CCSM4 contributors and the National Center for Atmospheric Research
- CNRM-CM5 modelers and Centre National de Recherches Météorologiques
- MIROC-ESM contributors and Japan Agency for Marine-Earth Science and Technology and the University of Tokyo

3

• This presentation:

www.climatemodeling.org/ $\sim\!bjorn/talks/$